
An Introduction to Tree Automata

and the Recent Trend

Hitoshi Ohsaki

AIST & JST

8th PPL (Ogoto)

March 2006

Why tree automata ? Why not tree automata ?

• structures

• algebraic properties

• decidability

• semantics

Why tree automata ? Why not tree automata ?

• structures

• algebraic properties

• decidability

• semantics

Automata for trees

initial configuration

⇒

initial configuration

Automata for trees

initial configuration

⇒

initial configuration

Automata for trees

final configuration

⇒

final configuration

Tree automata vs. automata

tree automata automata

input

transition rules

f(α1, . . . , αn) → β

f(α1, . . . , αn) → f(β1, . . . , βn)

α → β

α
f→ β

α → β

closure properties ∪ ∩ ()c ∪ ∩ ()c

decidability ∈ ⊆ = ∅? ∈ ⊆ = ∅?

Definition

A : tree automaton (F ,Q,Qfin,Δ)

F set of function symbols with fixed arity (signature)

Q set of state symbols such that F ∩Q = ∅

Qfin set of final state symbols such that Qfin ⊆ Q

Δ set of transition rules with the following forms :

f(p1, . . . , pn) → q1 (TYPE 1)

f(p1, . . . , pn) → f(q1, . . . , qn) (TYPE 2)

p1 → q1 (TYPE 3)

for some f ∈ F p1, . . . , pn, q1, . . . , qn ∈ Q

Transition move

• →A move relation of tree automaton :

s →A t if s = C[l] and t = C[r]

for some l → r in Δ and context C

E.g. Consider A with transition rules Δ :

a → q1 b → q2 f(q1, q2) → q3

then

f(a,b) →A f(q1,b) →A f(q1, q2) →A q3

• L(A) set of trees reachable by A to final state

E.g.

f(a,b) accepted if q3 is final state

{ f(a,b) } language accepted by A

Basic properties

• Epsilon-rule elimination

• Union

• Intersection

• Complementation

– Deterministic and complete tree automata

– Downsizing technique (cf. Myhill-Nerode theorem)

• Emptiness problem

– Pumping lemma

Eliminating transition rules of Types 2 & 3

A tree automaton A = (F ,Q,Qfin,Δ) is regular if Δ consists of

(TYPE 1)-transition rules

Theorem

Given A : tree automaton over F
∃ B : regular tree automaton such that L(B) = L(A)

Proof sketch

Define ΔB as follows: f(p1, . . . , pn) → p in ΔB if and only if

f(p1, . . . , pn) →A · · · →A f(q1, . . . , qn) →A q →A · · · →A p

for some f ∈ F and p1, . . . , pn, p ∈ Q

Note Optimal algorithm for this computation runs in P-time relative to |A|

Deterministic & complete tree automata

Given A : regular tree automaton over F
∃ B : deterministic and complete regular tree automaton

such that L(B) = L(A)

Proof sketch

Define a tree automaton Ad as follows:

Qd = 2Q

Qdfin = {A ∈ Qd | A ∩Qfin 	= ∅ }
Δd = {f(A1, . . . , An) → A |

(1) A1, . . . , An ∈ Qd

(2) A = {q | ∃q1 ∈ A1, . . . ∃qn ∈ An, ∃f(q1, . . . , qn) → q ∈ Δ} }

By construction Ad is regular, deterministic and complete

Moreover, Ad satisfies L(Ad) = L(A)

Tree automata and context-free grammar

Given G : context-free grammar in Chomsky normal form over Σ

∃ A : regular tree automaton over { f } ∪ Σ

such that A simulates run(G)

Proof sketch

Define A to be

(1) f(α, β) → γ in A iff γ → α β in G

(2) a → γ in A iff γ → a in G

Note Grammar is not necessarily in Chomsky normal form

⇒ f is replaced by f2 f3 . . . fn

Observation

leaf(A) is context-free language when A is regular tree automaton

Pumping Lemma for tree automata

Given A : tree automaton

t is accepted by A
&

depth(t) > min(|Q|, |Δ|)

implies

t = C[D[u]] (|D| > 0)
&

C[Dn[u]] is accepted by A
p

q

q

C

u

D ⇒

p

q

q
q

q

C

D

D

u

Cf. uvxyw-theorem for context-free grammar

Linear equational constraints

Consider the language over F = { f a b }
equation V = { x y }

L = { t | || t ||a = || t ||b }
x = y

such as

f

f

fa

b

b a

f

f

f

b a a b

then

L is not accepted by any tree automaton

Linear equational constraints

Consider the language over F = { f a b }
equation V = { x y }

L = { t | || t ||a = || t ||b }
x = y

such as

f

f

fa

b

b a

f

f

f

b a a b

then

L is not accepted by any tree automaton

Commutative grammar and linear sets

S (⊆ Nn) is linear set if ∃ vectors c p1 p2 . . . pk in Nn such that

S =

⎧⎨
⎩ v

∃x1 x2 · · · xm ∈ N

v = c + x1· p1 + x2· p2 + · · · + xk · pk

⎫⎬
⎭

S1 :

(
1
1

)
+ x1

(
1
1

)

S2 :

(
2
1

)
+ x1

(
1
0

)
+ x2

(
1
1

)

A finite union of linear sets is called a semi-linear set (e.g. S1 ∪ S2)

Parikh’s mapping

Given Σ = { a1 a2 · · · an }
Parikh image ΨΣ : Σ∗ → Nn such that

ΨΣ(w) =

⎛
⎜⎜⎜⎜⎜⎜⎝

�a1(w)

�a2(w)

· · ·
�an(w)

⎞
⎟⎟⎟⎟⎟⎟⎠

�ai(w) denotes the number of occurrences of ai in w

Theorem [Parikh, Ginsburg 1966]

∀ L : commutative language, i.e L = C(L)

Parikh image Ψ(L) is semi-linear iff

∃ M : context-free language such that L = C(M)

AC-axioms in tree structure

Suppose A (associativity) and C (commutativity) for f in the previous example :

f

f

x y

z =

f

fx

y z

associativity

f

x y

=

f

y x

commutativity

then

L is AC-closure of the following tree language L′

f(a,b) ∈ L′

f(t1, t2) ∈ L′ if t1, t2 ∈ L′

Note

L′ is tree language accepted by tree automaton

Equational tree automata

A / E : equational tree automaton

A tree automaton (F ,Q,Qfin,Δ)

E set of equations over F with V

In particular
(notation) (name)

E = AC (set of AC-axioms) A/AC monotone AC-tree automaton

L(A/AC) AC-monotone tree language

E = A (set of A-axioms) A/A monotone A-tree automaton

L(A/A) A-monotone tree language

If Δ consists only of (TYPE 1) transition rules

E = AC (set of AC-axioms) A/AC regular AC-tree automaton

L(A/AC) AC-regular tree language

Transition move (in equational case)

• →A/E move relation of equational tree automaton :

s →A/E t if s =E C[l] and t =E C[r]

for some l → r in Δ and context C

E.g. Consider A with transition rules Δ and FAC = { f } :

a → q1 b → q2 f(q1, q2) → q3

then

f(b, a) →A/AC f(q2, a) →A/AC f(q2, q1) →A/AC q3

• L(A/E) set of trees reachable by A/E to final state

E.g.

f(b, a) accepted if q3 is final state

{ f(a,b) f(b, a) } language accepted by A/AC

Closure under Boolean operations
[Ohsaki CSL’01, Ohsaki & Takai RTA’02

Ohsaki & Seki & Takai RTA’03
Ohsaki & Talbot & Tison & Roos LPAR’05]

regular AC-regular AC-monotone

closed under ∪ � � �
closed under ∩ � � �
closed under ()c � � ×

regular TA < regular AC-TA < monotone AC-TA

commutative CFG commutative CSG

regular A-regular A-monotone

closed under ∪ � � �
closed under ∩ � × �
closed under ()c � × �

regular TA < regular A-TA < monotone A-TA

CFG CSG

Decidability results

regular AC-regular AC-monotone

t ∈ L(A/AC) ?
�

(LOGCFL)

�
(NP-complete)

�
(PSPACE-compl.)

L(A/AC) = ∅ ? � � �
L(A/AC) ⊆ L(B/AC) ? � � ×

regular A-regular A-monotone

t ∈ L(A/A) ?
�

(LOGCFL)

�
(P-time)

�
(PSPACE-compl.)

L(A/A) = ∅ ? � � ×
L(A/A) ⊆ L(B/A) ? � × ×

Note Universality problem for monotone AC-tree automata remains open

See http://www.lsv.ens-cachan.fr/rtaloop/problems/101.html

Proof idea of non-closedness under complement

Given a signature F = { f } ∪ { a1, . . . , an }

P : conjunction of C arithmetic constraints over positive integers N+ :

C := xi = c (c : fixed natural number)

| xi + xj = xk

| xi × xj = xk

such that i, j, k � n and k 	= i, j

LP : tree language over F whose Parikh’s image satisfies P , meaning that

for each t ∈ LP , �(t) = (||t||a1 , . . . , ||t||an
) is a solution of P

Suppose Lxi × xj � xk
is accepted by monotone AC-TA then

• LP is accepted by monotone AC-TA

• LP 	= ∅ iff ∃ (x1, . . . , xn) in Nn
+ : P (x1, . . . , xn) = true

“LP 	= ∅?” is decidable

but then it contradicts to the undecidability of Hilbert’s 10th problem �

Proof idea of non-closedness under complement

Given a signature F = { f } ∪ { a1, . . . , an }

P : conjunction of C arithmetic constraints over positive integers N+ :

C := xi = c (c : fixed natural number)

| xi + xj = xk

| xi × xj = xk

such that i, j, k � n and k 	= i, j

LP : tree language over F whose Parikh’s image satisfies P , meaning that

for each t ∈ LP , �(t) = (||t||a1 , . . . , ||t||an
) is a solution of P

Suppose Lxi × xj � xk
is accepted by monotone AC-TA then

• LP is accepted by monotone AC-TA

• LP 	= ∅ iff ∃ (x1, . . . , xn) in Nn
+ : P (x1, . . . , xn) = true

“LP 	= ∅?” is decidable

but then it contradicts to the undecidability of Hilbert’s 10th problem �

Lemma 1

There exists A/AC over F = { f } ∪ { a1, . . . , an } with FAC = { f } such that

Parikh’s image of L(A/AC) satisfies xi × xj � xk (i, j, k � n and k 	= i, j)

Proof Example of A/AC is found in our paper [Ohsaki et al. LPAR’05] �

Lemma 2

There exists B/AC that represents xi × xj > xk (i, j, k � n and k 	= i, j)

Proof Example of B/AC over the same F is exhibited �

Suppose ∃ C/AC over F that represents xi × xj � xk

then ∃ D/AC over F that represents xi × xj = xk (∵ Lemma 1)

It admits M determining, for arbitrary constraint P

-- “yes” if P has a solution

-- “no” otherwise

Note L(C/AC) is the complement of L(B/AC) (cf. Lemma 2)

Theorem 1

AC-monotone tree languages are not closed under complementation �

Corollary 1

regular AC-TA < monotone AC-TA

Proof

• regular AC-TA � monotone AC-TA (by definition)

• the class of regular AC-TA is closed under Boolean operations

(another proof)

Suppose F = { f } ∪ { a1, . . . , an } with FAC = { f }

then

L : AC-regular tree language iff Parikh’s image �(L) : semilinear

Tree language representing xi × xj � xk is not AC-regular �

Theorem 2

The inclusion problem for monotone AC-TA is undecidable

Proof

Suppose P ≡ (p1 = q1) ∧ · · · ∧ (pk = qk) over {x1, . . . , xn }
Let

P� ≡ (p1 � q1) ∧ · · · ∧ (pi � qi) ∧ · · · ∧ (pk � qk)

Qi ≡ (p1 � q1) ∧ · · · ∧ (pi > qi) ∧ · · · ∧ (pk � qk)

then

∃(x1, . . . , xn) : P (x1, . . . , xn) = true iff ∃(x1, . . . , xn) : P�(x1, . . . , xn) = true

∧∧
1�i�k

Qi(x1, . . . , xn) = false

iff LP� 	⊆
⋃

1�i�k

LQi

LP� LQi
(1 � i � k) : AC-monotone (∵ Lemma 1 & Lemma 2) �

Theorem 3

The membership problem t ∈ L(A/AC) for monotone AC-TA is PSPACE-complete

Proof

• PSPACE : This problem is solvable with polynomially space-bounded TM

In fact, e.g. the question “ t ∈ L(A/AC) ? ” is <P -reducible to

the membership problem t ∈ L(BA/A) for monotone A-TA

Note 1 the membership problem for monotone A-TA is PSPACE-complete

Note 2 PSPACE is closed under <P

• PSPACE-hardness : Use QBF (quantified Boolean formula) problem

Note 3 To determine whether Φ is valid is PSPACE-complete

Φ := x | ¬Φ | Φ ∧ Φ | ∃x : Φ

Proof (cont’d)

Given QBF Φ

we can construct tΦ and AΦ/AC in linear time

such that

Φ is valid iff tΦ ∈ L(AΦ/AC)

(another proof suggested by LPAR’05 referee)

Use reachability problem for 1-conservative Petri nets :

• this problem is PSPACE-complete

• given Petri net N and the initial and final configurations m m′

they are linear-time reducible to tm and AN,m′/AC such that

m →∗
N m′ iff tm ∈ L(AN,m′/AC)

�

Related work

Verma & Goubault-Larrecq [RTA’03]

Alternating two-way AC-tree automata

Seidl & Schwentick & Muscholl [PODS’03]

Presburger tree automata

Lugiez [FOSSACS’03]

Multitree automata with counting and equality constraints

Comon-Lundh & Cortier [RTA’03]

Narrowing technique manipulating xor (A, C, U, X) theory

ACUX-tree languages are not closed under complementation [Verma LPAR’03]

Genet & Viet Triem Tong [LPAR’01]

Timbuk : tree automata library

AC-theory is handled by approximation

Roadmap on ACTAS project (2001–)

at University of Illinois at Urbana-Champaign

References

Publications I: equational tree automata (1)

[1] Beyond Regularity: Equational Tree Automata for Associative and

Commutative Theories

Hitoshi Ohsaki

15th International Conference of

the European Association for Computer Science Logic (CSL 2001)

Paris (France), September 2001

LNCS 2142, pp. 539–553

[2] Decidability and Closure Properties of Equational Tree Languages

Hitoshi Ohsaki & Toshinori Takai

13th International Conference on

Rewriting Techniques and Applications (RTA 2002)

Copenhagen (Denmark), July 2002

LNCS 2378, pp. 114–128

Publications I: equational tree automata (2)

[3] Recognizing Boolean Closed A-Tree Languages with

Membership Conditional Rewriting Mechanism

Hitoshi Ohsaki & Hiroyuki Seki & Toshinori Takai

14th International Conference on

Rewriting Techniques and Applications (RTA 2003)

Valencia (Spain), June 2003

LNCS 2706, pp. 483–498

[4] Monotone AC-Tree Automata

Hitoshi Ohsaki & Jean-Marc Talbot & Sophie Tison & Yves Roos

12th International Conference on

Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2005)

Montego Bay (Jamaica), December 2005

LNAI 3855, pp. 337–351

c©Springer-Verlag

Publications II: software & applications

[5] ACTAS: A System Design for Associative and Commutative Tree Automata

Theory

Hitoshi Ohsaki & Toshinori Takai

5th International Workshop on Rule-Based Programming (RULE 2004)

Aachen (Germany), June 2004

ENTCS 124, pp. 97–111

[6] Sufficient Completeness Checking with

Propositional Tree Automata

Joe Hendrix & Hitoshi Ohsaki & José Meseguer

technical report August 2005

[7] Propositional Tree Automata

Joe Hendrix & Hitoshi Ohsaki & Mahesh Viswanathan

technical report February 2006

Tool demonstration

[8] ACTAS: Associative and Commutative Tree Automata Simulator

(presented by Toshinori Takai)

4th International Conference on Application of Concurrency to System

Design (ACSD 2004), Hamilton (Canada), June 2004

Software products

[9] CETA:

Library for Equational Tree Automata

Joe Hendrix

http://texas.cs.uiuc.edu/ceta/

[10] ACTAS

Hitoshi Ohsaki

To be announced at

http://staff.aist.go.jp/hitoshi.ohsaki/actas/

CETA homepage

Part II : System verification and tree automata

Solving model checking problem in tree automata

Automated reasoning :

• closure properties of Boolean operations

• decidable sub-classes

Reachability analysis based on rewriting and tree automata

set of initial states reachable state space

(system automaton)

→→→ · · ·
rewriting steps︷ ︸︸ ︷

∅?
¬ (verified property)

(property automaton)

model : term rewriting system + tree automaton

property : tree automaton

verification : Boolean operations & decision problems

One step of the procedure

t2

q2
t1

s

y

L

q1

q

L(Ai/AC) L(Ai+1/AC)

t2
t1

y x

R

q1

q

q2

t

qf qf

R

x

∃ L → R in R such that

Lσ →∗
Ai/AC q

Rσ 	→∗
Ai/AC q

then

complete Ai/AC so that

Rσ →∗
Ai+1/AC q

ACTAS : A tool for equational tree automata computation

-- Platform OS:

Linux

Solaris

Windows

-- Software requirement:

Java

ant (for rebuild)

libstdc++ (for CETA library)

-- Memory:

up to 2G byte (32 bit CPU)

over 20G byte (64 bit CPU)

-- Version:

0.9.060227

Security flaw in a network protocol (1)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r),alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)

Security flaw in a network protocol (2)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r),alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
chris

K(chris)

Security flaw in a network protocol (3)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r),alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
chris

K(chris)

E(K(alice), r),alice, chris

E(K(chris), r)

Security flaw in a network protocol (4)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r),alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
chris

K(chris)

E(K(alice), r),alice, chris

E(K(chris), r)

D(K(chris) , E(K(chris), r)) rAxiom

D(x, E(x, y)) y

Security flaw in a network protocol (5)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r),alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
chris

K(chris)

E(K(alice), r),alice, chris

E(K(chris), r)

D(K(chris) , E(K(chris), r)) rAxiom

D(x, E(x, y)) y
D(r , E(r,m)) m (secret message)

ACTAS specification (Lines 1 – 25)

1: [Signature]

2: const: a,b,c,s

3: var: x,y,z

4:

5: [R-rule: TRS]

6: Ds(x,Es(x,y)) -> y

7:

8: p1(pair(x,y)) -> x

9: p2(pair(x,y)) -> y

10:

11: # S1_s(pair(pair(x,y),z)) -> pair(y,Es(k(y),Ds(k(x),z)))

12: S1_s(pair(pair(a,b),z)) -> pair(b,Es(k(b),Ds(k(a),z)))

13: S1_s(pair(pair(a,c),z)) -> pair(c,Es(k(c),Ds(k(a),z)))

14:

15: # S2_x(y,z) -> pair(z,Es(nonce(x,y),m(x,y)))

16: S2_a(pair(b,z)) -> pair(z,Es(nonce(a,b),m(a,b)))

17:

18: S1_s(x) -> x

19: S2_a(x) -> x

20:

21: [T-rule(p, p_client): TA]

22: Es(p,p) -> p

23: Ds(p,p) -> p

24: p1(p) -> p

25: p2(p) -> p

x, y, z y, E(K(y), D(K(x), z)))server

y, z z, E(r(x, y),m(x, y))client(x)

ACTAS specification (Lines 26 –)

26: pair(p,p) -> p

27: pair(p_client,p_client) -> p

28: q_a -> p_client

29: q_b -> p_client

30: q_c -> p_client

31:

32: S1_s(p) -> p

33: S2_a(p) -> p

34:

35: # C’s initial knowledge

36: k(q_c) -> p

37:

38: # initial messsage transfer:

39: # S1_s(pair(pair(a,b),Es(k(a),nonce(a,b)))) -> p

40:

41 # --- subterm decomposition ---

42: S1_s(q_p_ab_Es_ka_nab) -> p

43: pair(q_p_ab,q_Es_ka_nab) -> q_p_ab_Es_ka_nab

44: pair(q_a,q_b) -> q_p_ab

45: Es(q_ka,q_nab) -> q_Es_ka_nab

46: k(q_a) -> q_ka

47: nonce(q_a,q_b) -> q_nab

48: a -> q_a

49: b -> q_b

50: c -> q_c

1. If chris knows x and E(x, y), then
chris also knows y

2. If chris knows x and y, chris can
construct E(x, y) and D(x, y)

3. chris knows its own secret key
K(chris) and all principals names:
alice, bob, chris

4. chris knows message going through
the network (wiretapping)

5. chris decomposes sequences of
data (modification)

6. chris pretends to be other principals
(impersonation)

Descendant computation for reachability analysis

Loop number �(T-rules) �(states) time (sec)

0 23 13 3

1 56 34 4

2 102 46 6

3 109 46 18

4 109 46 23

Note 1. ∀ i: L(Ai/AC) ⊆ L(Ai+1/AC)

Note 2. ∃ i: L(Ai/AC) = L(Ai+1/AC)

⇒ ∃ i: L(Aj/AC) = L(Aj+1/AC) for all j � i

(⇒ ∃ i: L(Ai/AC) = L(A∞/AC))

Note 3. ∃ i: m(a, b) ∈ L(Ai/AC)

⇒ secret message m is retrieved by chris

Tool support for state space analysis

Computation mode

Module names (i.e. selected R-rule and T-rule names)

Parameters 1–3 (0 � i � 100)

Execution time

Number of transition rules

Number of state symbols for each loop computation

Graph1: number of transition rules × time(sec)

Graph2: number of state symbols × time(sec)

Graph3: time(sec) × loop number

(in HTML file format)

AC-axioms in encryption scheme

alice bob

(1) r, K(a) ◦ r

(2) K(b) ◦ r

(3) E(K(a) ◦K(b) ◦ r, m)

K(a) r m K(b)

K(a) K(b) : secret keys

r : random number

m : secret message

E : encryption function

◦ : AC symbol (infix operator)

Claim: secret message m is not retrieved by wiretapping only

(Cf. “Easy Intruder Deductions” by Comon-Lundh & Treinen 2003)

AC-function symbols in ACTAS specification

1: [Signature]
2: AC: f
3: const: a,b,c,m,r
4: var: x,y
5:
6: [R-rule: TRS2]
7: Ds(x,Es(x,y)) -> y
8:
9: [T-rule(p): TA2]

10: Ds(p,p) -> p
11: Es(p,p) -> p
12: f(p,p) -> p
13:
14: f(q_ka,q_r) -> p
15: r -> q_r
16:
17: r -> p
18:
19: f(q_kb,q_r) -> p
20: k(q_b) -> q_kb
21: b -> q_b
22:
23: e(q_f_kba_r,q_m) -> p
24: f(q_kab,q_r) -> q_f_kba_r
25: f(q_kb,q_ka) -> q_k_ba
26: k(q_a) -> q_ka
27: a -> q_a
28: m -> q_m

29: # C’s initial knowledge
30: a -> p
31; b -> p
32: c -> p
33: k(q_c) -> p
34: c -> q_c

initial knowledge

&

messages on

the network

base knowledge obtainable knowledge

→→→ · · ·
Dolev-Yao’s axioms + E︷ ︸︸ ︷

∅?

secret data

Intruder deduction problem (general version)

Given two sets L, M (of messages) and equational rewrite system R/E:

Is the intersection of [→∗
R/E](L) and M the empty or not ?

Note 1. In the previous setting

L : initial knowledge + messages on the network

M : secret data

R/E : Dolev-Yao’s axioms and AC({f})

Note 2. Tree languages recognized by AC-TA, called AC-recognizable tree languages

are closed under ∩ and

AC-regular tree languages are also closed under ∩

Note 3. The emptiness problems for AC-TA and regular AC-TA are decidable

Non-left-linear case

∀ L → R in R such that L = C[x, x] e.g. D(x, E(x, y)) → y

Check L(Ai/AC, q1) ∩ L(Ai/AC, q2) 	= ∅

t
q2

t

x x

L

q1

q

Note

• Using CETA library, the intersection-emptiness problem for regular AC-TA

can be handled

• The intersection-emptiness for monotone AC-TA is decidable but

the known algorithm solving the problem is extremely expensive!

• In ACTAS, under- (over-)approximation algorithm is applied

when solving emptiness problems in AC-case

Research collaborators

Sophie Tison & Jean-Marc Talbot & Yves Roos

Université des Sciences et Technologies de Lille, France

– Invited positions, June 2002 &
June 2005

– Invitation (Talbot) to AIST, April 2006 (planned)

José Meseguer & Joe Hendrix

University of Illinois at Urbana-Champaign, IL, USA

– Invited position, January – March 2004

– Invitation (Hendrix) to AIST, July – August 2005

Ralf Treinen

École Normale Supérieure de Cachan, France

– Invited position, August – September 2004

– Invitation (Treinen) to AIST, December 2001 &
December 2004 &
mid-February – mid-March 2006

Tree automata techniques and applications

Rusinowitch et al.

INRIA – AVISPA project

http://www.avispa-project.org/

Ralf Treinen (LSV, ENS de Cachan)

PROUVÉ project

jointly with:

Loria Laboratoire Verimag

Cril Technology France Telecom

Hosoya & Vouillon & Pierce [ICFP’00]

Murata [PODS’01]

Dal Zilio & Lugiez [RTA’03]

Types in XML , XML manipulation

Yagi & Takata & Seki [ATVA’05]

Querying in Database

Klarlund & Møller & Schwartzbach

BRICS – MONA project

http://www.brics.dk/mona/

Copyright c© 2006 Hitoshi Ohsaki

(Research Center for Verification and Semantics, AIST)

Office: Amagasaki site – AIST Kansai

Office address:
Nakoji 3–11–46, Amagasaki, Hyogo 661–0974, Japan

URL: http://staff.aist.go.jp/hitoshi.ohsaki/

Phone: +81–6–6494–7823
FAX: +81–6–6494–7844

All rights reserved. No part of this lecture note may be
reproduced or stored in a retrieval system, in any form or
by any means, electronic, mechanical, photocopying, or
otherwise, without the prior consent of the publisher.

	Button1:

